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Abstract

The upwind leapJ?og or Linear Bicharacteristic Scheme (LBS) has previously been extended to treat

lossy dielectric and lossy magnetic materials. This report extends the Linear Bicharacteristic Scheme Jot

computational electromagnetics to the two-dimensional case, which includes treatment of lossy dielectric

and magnetic materials and perJect electrical conductors. This is accomplished by implementing the LBS

JOt homogeneous lossy dielectric and magnetic media and Jor perJect electrical conductors. Heterogeneous

media are modeled by applying surJace boundary conditions, and no special extrapolations or interpola-

tions at dielectric material boundaries are required. The PerJectly Matched Layer (PML) outer boundary

concept is also developed Jot this scheme. Results are presented Jot two-dimensional model problems on

uniJorm grids, and the FDTD algorithm is chosen as a convenient reJerence algorithm Jot comparison. The

results demonstrate that the explicit LBS is a dissipation-J?ee, second-order accurate algorithm which uses

an upwind computational stencil rather than a central difference stencil, and yet it has approximately one-

third the phase velocity error. Computational requirements are also discussed.

1 Introduction

Numerical solutions of the Euler equations in Computational Fluid Dynamics (CFD) have illustrated the

importance of treating a hyperbolic system of partial differential equations with the theory of characteristics

and in an upwind manner (as opposed to symmetrically in space). These two features provide the motiva-

tion to use the Linear Bicharacteristic Scheme (LBS), also called the upwind leapfrog (UL) method, for the

construction of many practical wave propagation algorithms. The upwind leapfrog (UL) method is based

upon the Method of Characteristics, which is a widely used numerical solution concept in CFD [1] [16].

In a hyperbolic system, the solutions (i.e. waves) propagate in preferred directions called characteristics. A

characteristic can be defined as a propagation path along which a physical disturbance is propagated [17].

The relevance to Maxwell's equations is intuitively obvious because electromagnetic waves have preferred

directions of propagation and finite propagation speeds. Characteristic-based methods have also been suc-

cessfully implemented and demonstrated primarily for free space and perfect electrical conductor (PEC)

electromagnetic problems [18] [31 ].

This report extends the LBS to the two-dimensional case to model both homogeneous and heterogeneous

lossy dielectric and magnetic materials and perfect electrical conductors (PECs). The LBS was originally

developed to improve unsteady solutions in computational acoustics and aeroacoustics [32]-[38]. It is a clas-

sical leapfrog algorithm, but it uses a one-sided (or upwind) stencil for the spatial derivatives, which follows

the wave characteristic more closely when compared with a classical leapfrog method. This approach pre-

serves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more

flexibility by the ability to adopt a characteristic based method. Clustering the stencil around the character-

istic enables high accuracy to be achieved with a low operation count in a fully discrete way [33]. The use

of characteristic variables allows the LBS to treat the outer computational boundaries naturally using the

exact compatibility equations. The LBS treats the outer boundary condition naturally without nonreflecting

approximations. The interior point algorithm predicts the outgoing characteristic variables at the domain

boundaries. For multidimensional applications, in principle, through knowledge of the wave propagation

angle, the local coordinates can be rotated to align with the characteristics, at which the boundary condition



becomesalmostexact.Therefore,noextraneousboundaryconditionisrequired.Inthecaseswherethis
coordinatetransformationisnotimplemented,thecharacteristic-basedalgorithmprovidesonlyanapproxi-
mationattheoutergridboundaries.However,thePerfectlyMatchedLayer(PML)outerboundaryconcept
canbeappliedtothisscheme,whichisdiscussedlaterinthisreport.TheLBSalsooffersanaturaltreatment
ofdielectricinterfaces,withoutanyextrapolationorinterpolationoffieldsormaterialpropertiesnearmate-
rialdiscontinuities.Exactboundaryconditionsonthetangentialfieldcomponentsaredirectlyenforcedat
materialinterfaces.TheLBSoffersacentralstorageapproachwithlowerdispersionthantheYeealgorithm
[39].It haspreviouslybeenappliedtotwoandthree-dimensionalfree-spaceelectromagneticpropagation
andscatteringproblems[34],[37],andit wasrecentlyextendedtotreatlossydielectricandmagneticmate-
rialsfortheone-dimensionalcase[40].

TheobjectiveofthisreportistopresenttheextensionoftheLBStothetwo-dimensionalcase,which
includeslossydielectricandmagneticmaterials.Resultsarepresentedforseveraltwo-dimensionalmodel
problems,andtheFDTDalgorithmischosenasaconvenientreferenceforcomparison.Theprinciplesto
extendthisproceduretothethree-dimensionalcasearestraightforward.Sections3and4presenttheLBS
implementationfortheTMandTEpolarizations,respectively.Section5 outlinesthedielectricmaterial
surfaceboundaryconditionandSection6discussestheouterradiationandPMLboundaryconditions.Sec-
tion8reviewstheFourieranalysisandcomputationalrequirements.Finally,Section9presentsresultsfor
two-dimensionalmodelproblemsandSection10providesconcludingremarks.

2 Abbreviation List

The following table provides a list of abbreviations and acronyms used throughout this report.

Abbreviation Description
CFD

FDTD

LBS

PEC

PML

TE

TM

UL

2D

Computational Fluid Dynamics
Finite Difference Time Domain

Linear Bicharacteristic Scheme

Perfect Electrical Conductor

Perfectly Matched Layer
Transverse Electric

Transverse Magnetic

Upwind Leapfrog
Two-dimensional

3 TM Polarization

Maxwell's equations for linear, homogeneous and lossy media in the two-dimensional TM case (taking

OEz 1 (OH v OHx )ot 7\_ oy _E_ (1)

OH. 1( OEz *H_) (2)Ot # O---y cr

Ot # \---_z cr*Hv (3)

O/Oz 0) are



where_ and_*aretheelectricandmagneticconductivities,respectively.Usingtheelectricdisplacement
D cE and making the substitution c 1/v/-fi-g gives

ODz ( OH x OHy _ cr
O--7--+ \ -_y -_j_ ] + - D zc 0 (4)

1 OH, ODz (r*

c-7 0---i-+ -aT + Tj Hx 0 (S)
10H:_ ODz or*

c20t Ox + --SHv 0 (6)

The procedure for the LBS is to transform the dependent variables Dz, Hx and H:_ to characteristic variables.

The algorithm developed here is the simplest leapfrog scheme described by Iserles [41] combined with

upwind bias, or simply, the Linear Bicharacteristic Scheme (LBS). To transform (4) (6) into characteristic

form, we multiply (5) and (6) by c and then add and subtract from (4) to give

O (D z 1H O (D z 1H _ _* OHx-- c Y) + - + (7)c _)+c

1 H Z or* OHx
-- 1H 8 (Dz + c y) + + (8)Ot c

o(1) •0-7 D_+ H_ +c-5_y Dz+ H. +ZDz+_---H. OHve # c Ox 0 (9)

__( _ )0( 1), * 0H_0 Dz H_ +c_ Dz Hx +-Dz+Cr H. 0 (10)Ot c # c Ox

Note that these equations are almost identical to the equations for the one-dimensional case [40], except for

the addition of the cross-derivative magnetic field terms. The characteristic variables are defined as

1
P Dz -H v (11)

C

1
Q Dz + - H v (12)

C

D_ + _1H_ (13)
C

1
S Dz - Hz (14)

C

to represent the ix and --y propagating solutions, respectively. Using these definitions, (7) (10) can be
rewritten as

OP OP 1 (_ ___) 1 (__ __) OHz

0-7 c +2 P+g + Q + -_-y 0 (16)

Ot _ + R + _ S Ox 0 (17)

Ot c_-y + _ R + g + S Ox 0 (18)



It isconvenienttodefineandstorethefollowingcoefficientsbeforetime-steppingbegins

Cr (9"*

a -- +--
c #
cr (9*

b
c #

(19)

(20)

Equations (15) (18) can be rewritten more concisely as

OP OP a__p b OHx
0---7-+ c-_-7-x+ 2 + _Q + --_--y 0 (21)

oo oo bp _ OHx
Ot c-_z + 2 + 2Q + O----y- 0 (22)

oR oR a_R bs OH:.
0_- + c57 + 2 + 2 ox 0 (23)

OS OS b a OH:,
Ot C-_y + _lg + -_S Ox 0 (24)

To develop the discretized algorithm for a two-dimensional system, the stencils of Figures 1 and 2 are

proposed for the LBS. We discretize time and space as t nAt, x lax, y jAy. To solve the wave

(a)

(i,j,n) ? (i+i/2, j,n+l)

t,lq_

(i-i/2,j ,n-l)

(b)

(i-i/2,j,n+l) ? (i,j,n)

! /a, s

Y,3
(i+i/2,j,n-l)O

x,i

Figure 1: Two-dimensional upwind leapfrog computational stencils for right-going (a) and left-going (b) x

propagating characteristics.

propagation problem without introducing dissipation, it is necessary that the stencil have central symmetry

so the scheme employed is reversible in time [33]. The stencil in Figure 1a is used for +x propagating waves

and the stencil in Figure lb is used for x propagating waves. The upwind bias nature of these stencils is

clearly evident. Figures 2a and 2b show the stencils for +y propagating waves, respectively. References

[32], [33], [36], [37], [38] clearly show that the LBS is second-order accurate.

Note that the third and fourth terms in (21) (24) represent the electric and magnetic loss (or source)

terms. A key element in developing an accurate LBS scheme is proper treatment of these source terms.

The method used here indexes the self source term in (21) (i.e. P) at time level n + 1 and it indexes the

coupled source term Q at time level n. This avoids a matrix solution at each grid point, and the formulation



9 (i,j+i/2,n+l)

(i,j ,n)

'22 <
R,S

(a)

O (i, j-q/2,n-q)

y,J

x,i

(i,j ,n)

(i,j-i/2,n+l) Q I

//
(b) (i, j+i/2,n-l)

Figure 2: Two-dimensional upwind leapfrog computational stencils for right-going (a) and left-going (b) y

propagating characteristics.

easily limits to the perfect conductor condition as G _ co. An identical application is made for equations

(22) (24).

Using the stencils shown in Figures 1 and 2 and the source term indexing scheme described above, the

resulting finite difference equations for (21) (24) are

pn÷l P_Zll/2,j) ( i 1/2,j pn 1 "_ ( i+l/2,j i 1/2,.,_ a
i+l/2,j + pn pn pn \

. .. i 1/2,j] @ C

2At \ -A-Tx ] + 2 i+l/2,j +
pn+l

b Q.n 1 (H_!(i,j + 1/2) H_!(i,j 1/2)) 0 (25)

2At c " ' + _'_i 1/2,j +

b pr_ 1 (Hr_(i.j + 1/2) H_(i,j 1/2)) 0 (26)
-2 i 1/ 2,.j @ -'_y ,

(/U++I /_z,j+l/2) (i,j 1/2 /_n 1l_/,J+l/2 . @ 12_n i,j 1/2J Ri,j+I/2_Z_[_i,j 1/2 a Rrt+ 1

2At + C < Ay ] @ 2 _i,.j+1/2 @

b S.r_ 1
-2 i,j+1/2 _ (Hy*(i + 1/2,j) H:;Z(i 1/2,j)) 0 (27)

i,j 1/2 @ ( i,j+1/2 Sn 1 _ sn sn

2At " C " _-7,_ @ 2 L'i,j 1/2 @

b 1 (H;(i + 1/2,5) 1/2,j)) 0 (28)1/2

where P_j denotes the value for P at grid point (i, j) and time level n. Note that the differences are taken
with respect to the cell center, i.e. the coordinate (i, j) is located at the center of the cell. Since we know

that H_ - c (R S)/2 and H:_ - c (Q P) /2, these equations can be rearranged in the form

(l+a/kt) Prt+li+l/2,.j prtli 1/2,j @ (1 2lZx) (P'rzi+l/2,j Pftl/2,.j) b/ktQi+l/2,jn



(1 @ a/_t) /_)_'z+1
"_{ 1/2,j

(1 + aAt)/)n+l• vi,j+l/2

(1 + aAt) S n÷li,j 1/2

where Ux cAt/Ax and uv
(29)-(32) as

Rn i,j 1/2) @ b'y .b'y( i,.j+1/2 j_'rt (Si,.j+I/2 S[:j 1/2)

n 1 Qn i 1/2,j) bAtpr_l/2,jOi+l/2,j (1 2b'x) ( i+1/2j on

Rn i,j 1/2) @ b'y .b'y( i,.j+1/2 j_'rt (_i,.j+1/2 _[:j 1/2)

_r+ 1 Rrt i,j 1/2) bat S_ij+l/2i,j 1/2 @ (1 2uu) ( i,j+1/2 j_n

_x (P,[_I/2,j Pft 1/2,j) + /"x (Qi+i/2,j Q_I/2,.j)

sn li,j+l/2 (1 2/@)(sni,j+l/2 S_j 1/2) bAtR_Z.i,. 1/2

"x (P[_I/2,.j Pft 1/2,j) + /"x (Qi+i/2,j Q_I/2,.j)

cAt/Ay are the x and y

(29)

(30)

(31)

(32)

Courant numbers. We now rewrite equations

pn+l
i+1/2,j /_['/ (1 @ a At)

Qn+ I
i 1/2,j /_'/ (1 @ a At)

Rn+l
i,j+1/2 R_aZ/(1 + a At)

_i n+ l
,j 1/2 /E_/ (1 @ a At)

where R[ _ R) are the residuals defined by

/_[t- P_;Z 1}2,j @ ( 1 2l/x)(Pf;1/2,j P(_ 1/2,.j) bAtQri_l/2,j

/2y (_:_,.j+1/2 [_:zj 1/2) + /2y (_i,j+l/2 _,_:.j 1/2)

R_2t Qi+l/2,jn1 (1 2Ux)( Qni+l/2,j Qnl/2,j) b/ktPf_l/2,j

/2y (_:t.j+l/2 [_:zj 1/2) + /2y (Si,j+l/2 _,_:.j 1/2)

/l_t _n li,j 1/2 @ (1 2/@)(]2_ni,j+1/2 J_j 1/2) bz2xtS::j+l/2,.

/2. (Pf;1/2,j P(t 1/2,.j) @ l/x (Qi+l/2,j Q_ 1/2,.j)

R_ r_ 1 Sn .S_-j+I/2 (1 2v',V) (i,j+1/2 Sir,_j 1/2) b At/_'_,_ 1/2

/2. (Pf;1/2,j P(t 1/2,.j) + P'z (Oi+l/2,j O_1/2,.j)

Equations (33) (36) are the update equations for the 2D

lossy dielectric and magnetic materials. Note that as cr

Qn+l Rn+l sn+l
i 1/2,j' i,j+1/2' and i,j 1/2 0 as required.

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

TM LBS scheme at cell (i,j) which can contain
that P_+_oc, then we have the PEC condition i+1/2,j,

4 TE Polarization

Maxwell's equations for linear, homogeneous and lossy media in the two-dimensional TE case (taking

O/Oz 0) are

OE. 1 (OHz )
Ot 7 \--_y GExj (41)



OEv _ ( OH_ )Ot 7 Ox _E:u (42)

Ot # \ _ _ ] a---Hz# (43)

Using the electric displacement D -- eE and making the substitution c - 1/v/-fi-g gives

ODx OH_
+ adz - 0 (44)

Ot Ot e

ODy OHz a
Ot + _ + 7 Dy 0 (45)

10Hz OD. OD v (7"
c20t Oy + _ + _-_Hz 0 (46)

The procedure for the LBS is to transform the dependent variables D., D v and Hz to characteristic variables.

To transform (44) (46) into characteristic form, we multiply (46) by c and then add and subtract from (44)

and (45) to give

1H a
• 1H O(Dy+7 z)• cODx _*O("y+ 7 z) +c +TDy + 0 (47)ot _ _ _H_

O(D, O(D, 0,. <
v Ox + -Dy + c Hz 0 (48)e Oy pcOt

1HO(Dx : z)

Ot Oy

: H (DxO (Dx + c z) 0 +
C

Ot Oy

The characteristic variables are defined as

1H .
O (Dx 70 a cODv+ c + -Dx a Hz 0

c Ox pc

+ aDx + c_ + a*H_ 0
c #c

1
P Dy + - Hz

C

Q Dv _1Hz
C

1
R D_ - Hz

C

1
S Dx + - Hz

C

to represent the 4-x and 4-y right and left propagating solutions, respectively.

(47) (50) can be rewritten as

OP OP

at + c-b7 + : + P+: Q c--_v o

ot _ + 2 P +

OR OR + + R +
o-T+ _o---_ : -5

ot _N+: R+:

_) ODx+ 0+_77 o

a* ) cODy# S -_f 0

_--_f) c ODy+ S+--_f 0

(49)

(50)

(51)

(52)

(53)

(54)

Using these definitions,

(55)

(56)

(57)

(ss)



Using the a and b coefficients defined in (19) and (20) we can rewrite equations (55)-(58) more simply as

OP OP ap b ODx 0 (59)
0--/-+%-7+2 +3 0 Co---7

OQ OO b__p a ODx 0 (60)
ot _-g-21+2 + _0 + _ o--7

OR OR a b cODv
O-T + c-_y + _R + _S _ 0 (61)

ON OS b a ODy

ot _ + JR + Ts + c_ 0 (62)

To develop the discretized algorithm for a two-dimensional TE system, we use the same stencils as for the

TM case, which are shown in Figures 1 and 2. We also employ the same indexing scheme for the self and

coupled source terms in (59) (62) and we also use a central difference approximation at the appropriate

half-integer indexed cell to evaluate the cross derivative terms.

To derive the finite difference equations for (59) (62) we use the same stencils shown in Figures 1 and

2. Since we also know that Dx (R + S)/2 and Dy (P + Q)/2, the TE finite difference equations are

(1 @a/kf;)pn+li+l/2,j pni 1/2,jl @ (1 2 Z"x) (Dni+l/2,j P? 1/2,j) b/ktQr_l/2,j @

(1 + aAt) on+l
"_i 1/2,j

(1 @ az2Xt)_t._11/2

(1 + aAt) S n+l
i,j 1/2

Rn i,j 1/2) + % Sn i j 1/2) (63)

n 1 Qrt i 1/2,j) bAtpr_l/2,jQi+l/2,.j (1 2..) ( i+1/2.j (T _

R'Z i,j 1/2) % Sn ij 1/2) (64)

j_n 1 I_n i,j 1/2) b/kt X_Ij+I/2 @i,j 1/2 @ (1 2 Uy) ( i,j+l/2 R'n

sn li,j+l/2 (1 2//y) (sni,j+l/2 SPj 1/2) bAtR_zj,. 1/2

We now rewrite equations (63)-(66) as

p/n+l

+i/2,j
Qn+ l

i 1/2,j

iRn+ l
i,j+l/2

Sin+ l

,j 1/2

where R[ _ R) are the residuals defined by

R[_/(1 + a At) (67)

n;'/(a + _ At) (68)

R_/(1 + a At) (69)

R2/(1 + a At) (70)

pn i pn i 1/2,j) bat i+l/2,j +R_ _ i 1/2j+(1 2t,_) ( i+1/2.j P*_ O*_

j_n i,j 1/2) @ l@ S n i,j 1/2)//Y (i,j+1/2 R_" (ij+1/2 sn

R_ _, 1 (1 2u_) _' Q_' 1/2,_) bAtP[' 1/2,jQi+l/2,j (Qi+l/2,j . .

(71)



/r_rtli,j 1/2 + (1 2/@) ( i,j+l/2i_r_ lc_t,j,. 1/2) b_tSi,j÷l/2@n

n 1 Sn i,j 1/2) b AtR_j 1/2Si,j+l/2 (1 2 u_) ( i j+1/2 Sn

(72)

(73)

(74)

Equations (67) (70) are the update equations for the 2D TE LBS scheme at cell (i,j) which can contain
that/_+1lossy dielectric and magnetic materials. Note that as cr _ oc, then we have the PEC condition i+1/2,j,

Qr_+l Rr_,+ll/2, and Sri+11/2 0 as required. Note that the update equations are identical to the TMi 1/2,j'
case, the differences being in the definition of the characteristic variables and in evaluation of the cross
derivative terms.

5 Heterogeneous Materials

One of the difficulties with the conventional FDTD algorithm is the error in treatment of material discon-

tinuities. Recent research efforts have attempted to reduce this error source by suitable averaging of material

properties across the interface or by interpolation or extrapolation of the electromagnetic fields near these

material boundaries [42], [43]. The advantage of the LBS is that the characteristic based nature of the al-

gorithm leads to a very natural treatment of dieletric interfaces. Since the LBS works with characteristic

variables, the slope of characteristic curves in each material will be different, and the physical boundary

conditions permit an elegant and efficient implementation of a dielectric interface boundary condition. This

numerical boundary condition implements the physics exactly, with no averaging, interpolation or extrapo-

lation required.

To implement the dielectric material interface boundary condition, consider a portion of a two-dimensional

grid shown in Figure 3, which contains material discontinuities in both the x and y directions. We can see

that the characteristic variables P and Q are co-located at the center of the cell edges along the y axis. Sim-

ilarly, variables R and S are co-located at the center of the cell edges along the w axis. Thus, the LBS has

a staggered storage scheme, similar to the conventional FDTD method. Spatial derivatives are taken with

respect to the cell center, which is where the cell coordinates (i, j) are defined.

The characteristic variables at each grid point (i, j) on the interface are split into two components each:

PI,j, QI,j, P2,j and Q2,j for interfaces perpendicular to the x axis and/},1, Ri,2, S,z,2 and Si,2 for interfaces

perpendicular to the y axis. The terms PI,j, QI,j,/_i,1 and Si,1 exist just to the left and bottom of the ma-

terial interface, respectively, as shown in Figure 3. The remaining terms/3,j, Q2,j,/_i,2 and S,i,2 exist just

to the right and top of the material interface. Note that the i and j subscripts have been omitted from the

dielectric boundary split field components in Figure 3 for clarity. For material 1, equation (33) is used to
predict the value for p_+l1,j at the boundary and for material 2, equation (34) is used to predict the value for

Qr,+l Similarly, equation (35) is used to predict the value of/_.+1 and (36) predicts the value for 59 +12,j • , i,2 •

The procedure for the TE polarization is identical. For example, in the TE case, the characteristic variable

P uses field components D:_ and Hz, which both are tangential to material interfaces that are perpendicular



y

(i,j+l)

P2'Q2 X

R S
R2,S 2

Figure 3" Section of a two-dimensional computational grid for the LBS showing characteristic variables,

dielectric interfaces and corresponding field components and characteristic variables used for the surface

boundary condition.

to the z axis.

To complete the implementation, the Qr_+ll,._ and p,_.+s,,terms must be updated. These terms are updated
by enforcing the physical boundary conditions on the electromagnetic field at the material boundary. We can

then solve for Qr,+11,._and p,d,,+l in terms of the "known" characteristic variables/_+11,._ and "_2,._r_+l"To develop
this procedure, the electromagnetic boundary conditions on the tangential field components are given by

Dzl.j Dz2,f
Ezl,j Ez2,._ _ ' " (75)

_1 _2

H;_I1,j -- H:_I2,j (76)

For the right-going wave, substituting (75) and (76) into (11) gives

pr_+l rv_+l lHr_+l (77)
1,j _zl,j @ Cl :ql,j

¢1 {p,r_+l Qn+l_ c2 {p,r_+l Qn+l_ (78)
2¢2 t, 2,._ + 20 ] +_t, 2,._ 2,j ]

Similarly, substituting (75) and (76) into (12) yields

@rz+l /3_z+1 ]--H rt+l (79)
2,j _z2,.f c2 v2,j

¢2 {pr_+l Qn+l'_ cl {pr_+l Qn+l'_ (80)
2el \ 1,j @ 1,j ] _ \ 1,j 1,j ]

pr_+l and nr_+lSince 1,j "_2 j are determined at boundary point (i, j) from the usual update equations (we treat them
./7_ + 1 g/r_+las "known" variables), it is necessary to express 2,._ and ,_1,._ in terms of these variables. Rearranging

10



(78)and(80)gives

p,n÷l pn+l @n+l (81)2,j T1 1,j +F1 2,j

Qn+l r pn+l + T2 Qn+l (82)1,j 2 1,j 2,j

where F12 and T1,2 are reflection and transmission coefficients given by

F 1 ( C2_2 c1_1) (83)

\c2_2 -_Cl_l/

2e2cl
rl (84)

C2_2 @ Cl_l

F2 (c1_1 c2_2_ (85)
\C2_2 TCl_I/

2elc2
Ti (86)

c2_2 @ Cl_l

From (81), it is clear that a right-going wave in material 2 is a sum of a transmitted portion of a right-going

wave in material 1 plus a reflected portion of a left-going wave in material 2. A similar argument can be

made for the left-going wave in material 1. In fact, the reflection coefficients F1,2 can be shown to be identi-
cal to the classical Fresnel reflection coefficients. The transmission coefficients also have the same form as

the Fresnel transmission coefficients.

Special care needs to be taken when the LBS calculates the solution at grid points near a material

discontinuity. For example, for the x interface at grid point (i, j) as in Figure 3, care must be exercised

to update the solutions at grid points (i 1,j) and (i + 1,j). At grid point (i 1,j), the term (_l,j

in (38) becomes Q[t,.i. At grid point (i,j), the terms P?_._,._and Qi_,j in (37) and (38) become Fll_,j and Q_,j,

respectively. At grid point (i + 1, j), the term P[_ 1,j in (37) becomes P._,j. Rearranging equations (29) and
(30) for grid point i we have

(1 + al At)pit,;1 pn 1 Z_ 'rti 1,j + (1 2vl)(P_'_,.j P: 1,j) bl tQl,j (87)

,. Q. ,j Q ,j) b AtP,  .j (88)

where _'l clAt/Ax, and _2 c2At/Ax. The terms al, a2, bl, b2 refer to the a and b coefficients in (19)

and (20) for materials 1 and 2, respectively. These equations are now easily solved for PI_+1,. and Qn+12,jand

then (81) and (82) are applied to obtain/_2+12,j and Qn+12,.i• A similar analysis can be made for the boundary
perpendicular to the y axis involving the R and S field components.

6 Outer Boundary Condition

The outer radiation boundary condition is used to terminate the computational lattice and permit out-

going waves to pass unreflected through the lattice boundaries [44]. The FDTD algorithm uses a spatial

central difference operator where it uses field values from neighboring cells to update solution variables.

Thus it cannot be used at the terminating faces of the problem domain. For example, the solution for a wave

propagating left to right will eventually require a grid point outside the domain. To terminate the computa-

tional lattice, an additional equation (boundary condition) is needed to solve the system and this introduces

11



informationintothesolutionthatisnotrequiredbyMaxell'sequations.ThePMLboundarycondition[45]
hasrecentlybeenintroduced,whichhasgreatlyincreasedtheaccuracyofFDTDsimulations.However,the
PMLcomeswithamoderateincreaseincomplexityforanFDTDcodedueto additionalvariablestorage
andupdateequations.

Onthecontrary,theLBSrequiresnoextraneousboundarycondition,andit includesthePMLboundary
conditionwithnoextrarequiredstorageorupdateequations.ForthepresentLBSimplementation,likethe
MethodofCharacteristics[31], theinteriorpointalgorithmcalculatestheleft-goingcharacteristicattheleft
boundary(i.e. i - 0) and the right-going characteristic at the right boundary (i.e. i - imax). Thus for

the LBS, at grid point i - 0, equation (34) calculates Q(0, j) and the incoming right-going characteristic,

P(0, j), is specified as a boundary condition. This same analysis applies at the right boundary where (33)

calculates P(imax,j) and the incoming left-going characteristic, Q(imax,j), is specified as a boundary

condition. Shang [20] has noted for characteristic based multidimensional and nonuniform grid problems,

in principle, the local coordinate system can be rotated to align with the characteristics, and the compat-

ibility equations provide an exact boundary condition. This transformation has not been implemented in

the present work, and will likely be the subject of future studies. A simple, yet effective approximation for

multidimensional characteristic based approaches is to set the incoming flux or characteristic variables at the

outer boundaries to zero and let the interior point algorithm predict the outgoing variables. When the wave

motion is aligned with a coordinate axis, this boundary condition is exact. But this approximation may not

be necessary since the LBS automatically includes the PML boundary condition without additional storage

or update equations.

The linear bicharacteristic form of Maxwell's equations for the 2D TM polarization in free space are

OP OP OH:_

0-7 + c-07x+ Oy o

0(2 OQ OHz

Ot c-07 + Oy o

OR OR OH:_
0-7 + _Tv O. o

Os Os OH:_
c 0

Ot Oy Ox

(89)

(90)

(91)

(92)

In the frequency domain using complex coordinates, we have

P OHz
jw P + C-_x + 02 0 (93)

O OHz
jc_Q c_+ _ 0 (94)

R OH_
jw R + c_O 02 0 (95)

S OH_
jco S c-O_ 02 0 (96)

To show how the LBS automatically includes the PML boundary condition, we derive the appropriate up-

date equations using the complex coordinate transformation approach proposed by Chew and Weedon [46].

12



Specifically,weuse

Substitutingtheseinto(93)-(96)gives

jwP+

jc_O_+

O 1 O
(97)

02 sx 8x
0 1 0

(98)
O_ % Oy

(7 x

Sx -- 1 + . (99)
2wco

sy 1 + .(7Y (100)
36060

jwR+

jwS+

(7:_p + OP OBx
co c-0-_x ÷ 0y 0 (101)

OBxo Q c + Oy 0 (102)

_:vR + OR OBy
co c Oy Ox 0 (103)

OS OBy
(7:qS c 0 (104)
co Oy Ox

where Bx (Sx/%) Hz and B:q (s:q/sx) H:_. In typical fashion with a PML FDTD implementation, we

let (7z (7y (7, then we have that Bx H_,/_v H u and (101)-(104) become

OP OP OHx
0----t-+ c -0-_x+ _--P + 0 (105)co Oy

OQ OQ (7 OHx
Ot C-_x ÷ -Q ÷ 0 (106)eo Oy

OR OR (7 R OHy
O_ + C_y + co Ox" 0 (107)

OS OS _---S OHy
Ot c-_-ffy + co Ox" 0 (108)

Furthermore, if we let c -- co, # -- #o and (7*/# 0 - (7/% as required by the PML boundary condition,

then the normal LBS update equations given by (21)-(24) can easily be shown to be identical to the LBS

PML update equations (105)-(108). This analysis shows how the LBS inherently incorporates the PML

boundary condition within the standard update equations. The PML conductivity (7 is still specified using

the conventional profiles: linear, quadratic or geometric [43].

7 Computational Requirements

It is instructive to examine the computational requirements of the LBS and the FDTD method. We can

use this analysis to determine if the LBS can provide equivalent or better accuracy than FDTD for the same

amount of computational resources. Let us assume a 2D grid with N x N cells. The FDTD method requires

SF 12N 2 + 16N + 4 (109)

13



total bytes to store the field component arrays, and the LBS requires

Sc -- 32N 2 +24N (110)

total bytes. Note that this storage calculation does not account for any extra terms such as arrays for boundary

conditions, far-field transformations, etc. We can define a storage ratio S_. between the LBS and FDTD as

SL 32N 2 + 24N
S,. (111)

SF 12N 2 + 16N + 4

If the LBS is more accurate than FDTD, we should be able to increase the cell size by a certain factor and still

maintain the same accuracy as FDTD. Increasing the cell size decreases the total number of cells required

in the grid. Thus, we define a grid reduction factor %, which can be used to determine the breakeven point

in storage and accuracy. The grid size for the LBS will be reduced in each dimension by N, giving a new

ratio

5,I. 32 (N/Nr) 2 + 24 (N/Nr.) 1
12N2 + 16N +4 Nr?S,. (112)

The percentage reduction in grid storage ratio from the FDTD method is then given by

Pr 100 (Sr S_) ( 1 2 )100 1 _rr Sr
(113)

To determine the breakeven point, we solve Pr - 0 for Nr in terms of N to yield

v/2N (4N + 3)Nr -- 3N 2+4N+1
(114)

Taking the limit of the positive root as N _ oc gives % _ 1.63. Thus, the LBS must be at least 1.63 times

more accurate than FDTD to achieve equivalent storage for the same accuracy. Factors above 1.63 means

the LBS requires less storage than FDTD for the same accuracy. Figure 4 shows a plot of the breakeven

1.6-

1.4--

._ol.2-

_0.8

._0.6

_0.4-

0.2

]

2 4 6 8 10 12 14 16 18 20
Number of grid cells

Figure 4: Breakeven ratio versus number of grid cells.

ratio versus the number of grid cells.
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8 Fourier Analysis

Various Fourier analyses of the two-dimensional LBS have already been completed [36], [37], [38];

therefore, only the important results and conclusions from these previous analyses will be reviewed in this

report. Most of the information presented is summarized from [36]. The stability condition for the 2D LBS

is L,,, L,:v< 1/2, where u_, t,:v are the Courant numbers L,_ - cAt/Am and % - cAt/Ay. Although this

stability limit is more restrictive than the standard FDTD method, it is not particularly troublesome because

many FDTD simulations use a Courant number of 1/2 for improved accuracy.

The complete Fourier analysis will not be outlined here for the sake of brevity. Rather, we present an

overview of the procedure followed by a discussion numerical results. The procedure for the Fourier analysis

is straightforward. Start with the LBS free space update equations (21)-(24) with a - b - 0 and substitute
a solution of the form

p_.j _ Poe._(.r_, io,_ .jo_) (115)

into these expressions. After some algebra, we have the system of equations

Tn+l _ V1Tn + V2 Tn 1 (116)

przwhich represents the three time-level LBS scheme with T z [ i,j, _z,.}, -oz,.,, -,,._j • To complete the

Fourier analysis, we make the substitution W _+1 - T r_to give

IT]n+lgg IV1V21[TIn14 0 • (117)

where/4 is the 4 × 4 identity matrix. The stability matrix G is then given by

G [V1_72114 0 (118)

which is an 8 × 8 matrix. The stability analysis is completed by calculating the eigenvalues of the stability

matrix G for various grid resolutions and grid propagation angles. To that end, we define

0x - 0 cosc_ (119)

0:_ -- 0 sinc_ (120)

o - 27r/N (121)

05 -- u0 (122)

where N is the grid resolution in cells/wavelength and c_ is the grid propagation angle. To simplify the

analysis, we also set L, - t,, - t,:v. The dispersion relation can be obtained by solving the equation

dot [c j¢ G] - 0 (123)

for 05. In comparison, the dispersion relation for the FDTD method is

sin 2 05 -- r,2 sin 2 (0,/2) ÷ u 2 sin 2 (0;_/2) (124)
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Fortheone-dimensionalLBS[47],it wasshowntheLBShadlessnumericaldispersionthantheFDTD
method.Extensivethree-parameterstudiesofnumericaldispersionforthe2DLBSwereperformedusing
thegridresolution(N),Courantnumber(L,)andgridpropagationangle(c_)asparameters.Thesestudies
revealedthattheoptimumCourantnumberisL,- 1/2sincedispersionisminimizedforallpropagation
angleswhencomparedtoFDTD.

Fora Courantnumber_ - 0.4andpropagationangleof 45°, thenumericaldispersiondecreases
smoothlywithincreasinggridresolutionasshowninFigure5.Fromthisfigure,weseethattheLBShas

I00 I I I

,, FDTD --

LBS ......

a, '_: i i i i i i i i

i",, i i i i i i i i
r_ i ",, i i i i i i i i
c_

_C_ ', _"\_' ', ', ', ', ', ', ',

1 ........ i........ __< .... ]......... [......... i......... ] ......... i ......... L......... i........
', ,, _, , ,, ,, ,, ,, ,, ,,, , ".... .......

-r-I , , ,'_. _. , , , , , ,

2
_4

_) 0.1 ........:........._.........;........._.........:........._.....":-"4---:-- '.........:........

&o

0.01 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Grid Resolution

Figure 5: Phase speed error versus grid resolution N for FDTD method and LBS with _, - 0.4 and c_ - 45°.

approximately 1/2 the phase error as FDTD. Generally, the dispersion error for the LBS grows as _ _ 0.

When _, - 1/2, numerical dispersion is zero along the coordinate axes and is maximum at 45° as shown

in Figure 6 for a grid resolution N -- 10 cells/A. When L, < 1/2, dispersion for the LBS remains substan-

tially less than for FDTD as shown in Figure 7 for N -- 20. From Figures 6 and 7, it is clear that as the

grid resolution is doubled, the numerical dispersion decreased by a factor of four; as expected for a second

order method. Finally, as shown in Figure 8 for N -- 10 cells/A, numerical dispersion decreases linearly as

_, _ 1/2; except for grid propagation angles along 45° vectors, where the LBS dispersion is very close to

that of FDTD. For propagation along 45° vectors, LBS numerical dispersion is minimized around L, - 0.3

and then approaches the FDTD value for _, -- 1/2 as shown in Figure 9 for N -- 20.

To summarize, the optimal Courant number for the LBS is 1/2. This Courant number offers much lower

dispersion for most all propagation angles except those near a 4_ vector. For _, < 1/2, numerical dispersion

decreases as both grid resolution and Courant number are increased. Typically, LBS dispersion is at least

1/2 that of FDTD, and can be much lower in many instances.
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Figure 6: Phase speed error versus grid propagation angle c_ for FDTD method and LBS with r, 1/2 and
N- 10.
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9 Results

To demonstrate the 2D LBS, we consider various canonical problems using the TM polarization. First,

we inject an incoming plane wave on the outer boundaries using the LBS, and let the algorithm propagate

the signal through the grid using a total field formulation. This is done by specifying the incoming charac-

teristic variable (P, Q, R or S) on the appropriate outer boundary. For example, on the left x boundary, P is

specified for all j coordinates at i - 1. We use a 71 x 71 free space grid, with a Ax - Ay - 1 cm, which

has a time step of At - 16.67 ps and the incident wave is a Gaussian pulse with FWHM of 35 time steps

(or 0.58 ns). We specify the incidence angle as 180°, and the electric field after 160 time steps is shown in

Figure 10. Similar results can be obtained with other incidence angles. It is clear that the LBS easily allows

1

0.8

O6

O4

02

0

7O
6O

I0

30 i40 50 60 70

Figure 10: Propagating plane wave injected on outer grid boundaries at 18ff incidence.

specification of incoming plane waves in its fundamental algorithm.

Next we move on to radiation from a point source in free space. This problem demonstrates that the

algorithm can easily treat spherical waves and it also tests the PML boundary condition. Two concurrent

grids are used in this problem, each having a cell size of 1 mm. The first is a small test grid of size 101 x

101 cells with an additional 10 cell PML boundary condition. This grid is centered within a large 501 ×

501 grid, and the point source is located at the center of both computational grids. The time step is 3.3 ps,

and an electric field point source is located at the center of both grids and the total number of time steps

is truncated at 512, to allow no reflection from the large grid outer boundaries to reach the field sampling

points. The inner grid is terminated with PML for both FDTD and the LBS, and the large grid is terminated

with a second-order Liao boundary condition for FDTD and a characteristic based boundary condition for

the LBS. The electric field is sampled at the same two locations in both grids, which are located 30 cells

in the +x direction from the point source and then +30 cells in the y direction in the smaller grid. The

point source is located in the smaller grid at grid point (61, 61) and the two sample points are (61, 91) and

(61, 31). Figure 11 shows the electric field at the upper sample point in the large grid for point source

radiation in free space. Note the agreement is excellent, and there are no reflections from the outer boundary

due to the Liao boundary condition. Similar results were observed at the lower sample point. Figure 12

shows the electric field at the upper sample point (61, 91) in the small test grid using the PML boundary
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Figure 11" Electric field versus time sampled at upper grid point in the large grid.

condition. Note again the agreement is excellent. Furthermore, we computed the global error in the small

test grid with the expression

GE _-_ (Elar._e(i,j) Esmc_tt(<.j)) 2 (125)
i,j

using the difference between the electric fields in the large and small grids. Figure 13 shows this global error

using the PML boundary condition for both methods and we see that the PML works very well. The error

for the LBS is in the -80 to -100 dB range, which is excellent. Figure 14 shows the time-domain results for

the LBS with and without the PML boundary condition. Note the reflections from the outer boundary are

clearly visible for the no PML case.

10 Conclusions

This report has extended the Linear Bicharacteristic Scheme for computational electromagnetics to the

two-dimensional case. Treatment of lossy dielectric and magnetic materials was discussed, and implemen-

tation of the PML boundary condition was outlined. It was demonstrated that the LBS has several distinct

advantages over conventional FDTD algorithms. First, the LBS is a second-order accurate algorithm which

is about 2-3 times as economical. The LBS can also be made to have zero dispersion error in certain

instances. Second, the LBS provides a more natural and flexible way to implement surface boundary condi-

tions and outer radiation boundary conditions by using characteristics and an upwind bias technique popular

in fluid dynamics. Third, the LBS can provide more flexibility to implement subgridding algorithms be-

cause of the compact nature of the computational stencil. A dielectric surface boundary condition was also

implemented and results were provided for two-dimensional free space radiation problems. Due to project

and time limitations, validation for lossy dielectric materials and heterogeneous materials was not explored
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in the present work. It is anticipated this will be the subject of future reports and articles. The results indi-

cate that the LBS is a very promising alternative to a conventional FDTD algorithm for many applications.

Higher-order extensions are available for the 2D case, but were not explored presently [36]. Extensions to

three-dimensional problems should be straightforward.

References

[1] D. S. Butler, "The numerical solution of hyperbolic systems of partial differential equations in three

independent variables," Proc. ofthe Royal Soc. of London, vol. 255A, pp. 232 252, 1960.

[2] M. B. Abbott, An Introduction to the Method ofCharacteristics, American Elsevier, New York, 1966.

[3] J. D. Hoffman V. H. Ransom and H. D. Thompson, "A second-order bicharacteristics method for

three-dimensional, steady, supersonic flow," AIAA Journal, vol. 10, no. 12, pp. 1573 1581, Dec. 1972.

[4] M. C. Cline and J. D. Hoffman, "The analysis of nonequilibrium, chemically reacting, supersonic flow

in three-dimensions using a bicharacteristic method," Journal oJComp. Phys., vol. 12, pp. 1 23, 1973.

[5] M. J. Zucrow and J. D. Hoffman, Gas Dynamics, John Wiley and Sons, New York, 1975.

[6] R. A. Delaney and R Kavanagh, "Transonic flow analysis in axial-flow turbomachinery cascades by

a time-dependent method of characteristics," Transactions of ASME, Journal ofEng. Power, vol. 107,

pp. 356 364, Jan. 1983.

22



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Y. W. Shin and R. A. Palentin, "Numerical analysis of fluid-hammer waves by the method of charac-

teristics," Journal of Comp. Phys., vol. 20, pp. 220 237, 1976.

J. D. Hoffman, "The method of characteristics applied to unsteady one-, two- and three-dimensional

flows," Tech. Rep. TR-80-07, Thermal Sciences and Propulsion Center, School of Mechanical Engi-

neering, Purdue Univ., 1980.

J. Padyak and J. D. Hoffman, "Flow computations in inlets at incidence using a shock fitting bichar-

acteristics method," AIAA Journal, vol. 18, pp. 1495 1502, Dec. 1980.

J. Vadyak and J. D. Hoffman, "Shock-fitting bicharacteristic algorithm for three-dimensional scarfed

nozzle flowfields," AIAA Journal, vol. 21, pp. 23 30, Jan. 1983.

B. N. Wang, On the Method of Characteristics and Its' Application to the Calculations of Annular

Nozzle Flowfields, Ph.D. thesis, Purdue University, West Lafayette, IN, 1984.

D. L. Marcum and J. D. Hoffman, "Calculation of unsteady three-dimensional subsonic/transonic

inviscid flowfields by the method of characteristics," in AIAA 22nd Aerospace Sciences Meeting,

Reno, NV, Jan. 1984, vol. AIAA 84-0440.

D. L. Marcum and J. D. Hoffman, "Calculation of three-dimensional flowfields by the unsteady method

of characteristics," AIAA Journal, vol. 23, no. 10, pp. 1497 1505, Oct. 1985.

D. L. Marcum and J. D. Hoffman, "Calculation of viscous nozzle flows by the unsteady method of

characteristics," inAIAA 23rdAerospace Sciences Meeting, Reno, NV, Jan. 1985, vol. AIAA 85-0131.

D. L. Marcum and J. D. Hoffman, "Subsonic/transonic/supersonic nozzle flows and nozzle integra-

tion," in Numerical MethodsJbr Engine-AirJ?ame Integration, S. N. B. Murthy and Gerald C. Paynter,

Eds., pp. 350498. American Institute of Aeronautics and Astronautics, 1986.

C. R Kentzner I. H. Parpia and M. H. Williams, "Multidimensional time dependent method of charac-

teristics," Computers andFluids, vol. 16, no. 1, pp. 105 117, 1988.

J. D. Hoffman, Numerical Methods Jot Engineers and Scientists, McGraw-Hill, New-York, 1992.

J. S. Shang, "Characteristic based methods for the time-domain Maxwell equations," in AIAA 29th

Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan. 1991, vol. AIAA 91-0606.

J. S. Shang, "A characteristic-based algorithm for solving 3-d time-domain Maxwell equations," in

AIAA 30th Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan. 1992, vol. AIAA 92-0452.

J. S. Shang, "A fractional-step method for solving 3D time-domain Maxwell equations," in AIAA 31st

Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan. 1993, vol. AIAA 93-0461.

J. S. Shang and D. Gaitonde, "Characteristic-based, time-dependent Maxwell equations solvers on a

general curvilinear frame," in AIAA 24th Plasmadynamics & Lasers Conference, Orlando, FL, July

1993, vol. AIAA 93-3178.

K. C. Hill J. S. Shang and D. Calahan, "Performance of a characteristic-based, 3-d time-domain

Maxwell equations solvers on a massively parallel computer," in AIAA 24th Plasmadynamics & Lasers

Conference, Orlando, FL, July 1993, vol. AIAA 93-3179.

23



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J.S.ShangandR.M.Fithen,"Acomparativestudyofnumericalalgorithmsforcomputationalelectro-
magnetics,"inAIAA 25th Plasmadynamics & Lasers Conference, Colorado Springs, CO, June 1994,
vol. AIAA 94-2410.

J. S. Shang, "Characteristic-based algorithms for solving the Maxwell equations in the time domain,"

IEEEAntennas and Propagation Magazine, vol. 37, no. 3, pp. 15 25, June 1995.

J. S. Shang, "A fractional-step method for solving 3d, time-domain Maxwell equations," Journal of

Comp. Phys.,vol. 118, pp. 109 119, 1995.

J. S. Shang, "Characteristic-based algorithms for solving the maxwell equations in the time domain,"

IEEEAntennas and Propagation Magazine, vol. 37, no. 3, pp. 15 25, June 1995.

J. S. Shang and D. Gaitonde, "On high resolution schemes for time-dependent maxwell equations," in

AIAA 34th Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan. 1996, vol. AIAA 96-0832.

D. Gaitonde and J. S. Shang, "High-order finite-volume schemes in wave propagation phenomena," in

AIAA 27th Plasmadynamics & Lasers Conference, New Orleans, LA, June 1996, vol. AIAA 96-2335.

D. C. Blake and J. S. Shang, "A procedure for rapid prediction of electromagnetic scattering from

complex objects," in AIAA 29th Plasmadynamics & Lasers Conference, Albuquerque, NM, June 1998,
vol. AIAA 98-2925.

John H. Beggs and W. Roger Briley, "An implicit characteristic based method for computational

electromagnetics," Tech. Rep. MSSU-EIRS-ERC-98-11, Mississippi State University, August 1998.

J. H. Beggs, D. L. Marcum and S. L. Chan, "The numerical method of characteristics for electro-

magnetics," Applied Computational Electromagnetics Society Journal, vol. 14, no. 2, pp. 25 36, July
1999.

J. R Thomas and R L. Roe, "Development of non-dissipative numerical schemes for computational

aeroacoustics," AIAA, 1993, paper number 93-3382-CR

R Roe, "Linear bicharacteristic schemes without dissipation," Tech. Report 94-65, ICASE,

NASA/Langley Research Center, Hampton, VA, 1994.

B. Nguyen and R Roe, "Application of an upwind leap-frog method for electromagnetics," in Proc.

l Oth Annual Review of Progress in Applied Computational Electromagnetic's, Monterey, CA, March

1994, Applied Computational Electromagnetics Society, pp. 446_458.

J. R Thomas, C. Kim and P. Roe, "Progress toward a new computational scheme for aeroacoustics,"

in AIAA 12th Computational Fluid Dynamics Conference. AIAA, 1995.

J. R Thomas, An Investigation of the Upwind Leapfivg Method for Scalar Advection and Acous-

tic/Aeroacoustic Wave Propagation Problems, Ph.D. thesis, University of Michigan, Ann Arbor, MI,
1996.

B. Nguyen, Investigation of Three-Level Finite-Difference Time-Domain Methods for Multidimen-

sional Acoustics and Electromagnetic's, Ph.D. thesis, University of Michigan, Ann Arbor, MI, 1996.

24



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

C. Kim, Multidimensional Upwind Leapfkog Schemes and Their Applications, Ph.D. thesis, University

of Michigan, Ann Arbor, MI, 1997.

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in

isotropic media," IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302_07, Mar.
1966.

J. H. Beggs and S. L. Chan, "The linear bicharacteristic scheme for computational electromagnetics,"

IEEE Trans. Antennas Propagat., 2001, submitted.

A. Iserles, "Generalized leapfrog methods," IMA Journal ofNumerical Analysis, vol. 6, pp. 381 392,
1986.

A. Yefet and R Petropoulous, "A non-dissipative staggered fourth-order accurate explicit finite-

difference scheme for the time-domain Maxwell's equations," Tech. Report 99-30, ICASE,

NASA/Langley Research Center, Hampton, VA, 1999.

A. Taflove, Ed., Advances in Computational Electrodynamics: The Finite-Difference Time-Domain

Method, Artech House, Boston, MA, 1998.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech

House, Boston, MA, 1995.

J.-R Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of

ComputationaIPhysics, vol. 114, no. 1, pp. 185 200, 1994.

W. C. Chew and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations

with stretched coordinates," Microwave and Optical Technologies Letters, vol. 7, no. 13, pp. 599 604,

Sept. 1994.

John H. Beggs, The Linear Bicharacteristic Scheme fbr Electromagnetics, NASA/Langley Research

Center, Hampton, VA, May 2001, NASA-TM-2001-210861.

25



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704_)133), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 2002 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics 706-31-41-01

6. AUTHOR(S)

John H. Beggs

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-18154

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/TM-2002-211663

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 33 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and demonstrated
on one-dimensional electromagnetic wave propagation problems. This memorandum extends the Linear
Bicharacteristic Scheme for computational electromagnetics to model Iossy dielectric and magnetic materials and
perfect electrical conductors in two dimensions. This is accomplished by proper implementation of the LBS for
homogeneous Iossy dielectric and magnetic media and for perfect electrical conductors. Both the Transverse
Electric and Transverse Magnetic polarizations are considered. Computational requirements and a Fourier
analysis are also discussed. Heterogeneous media are modeled through implementation of surface boundary
conditions and no special extrapolations or interpolations at dielectric material boundaries are required. Results
are presented for two-dimensional model problems on uniform grids, and the FDTD algorithm is chosen as a
convenient reference algorithm for comparison. The results demonstrate that the two-dimensional explicit LBS is a
dissipation-free, second-order accurate algorithm which uses a smaller stencil than the FDTD algorithm, yet it has
less phase velocity error.

14. SUBJECT TERMS

computational electromagnetics, FDTD methods

17. SECURITY CLASSIFICATION

OF REPORT

U nclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

30

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
293-102


